

Groundwater Impacted System Management Plan

Crondall, River Hart

Version control

Version	Date	Amendment	Author	Checked	Reviewed
1-d1	16/06/2021	Draft for EA	AJ	SE	DJ
1-d2	26/06/2021	Final Draft for EA	AJ	SE	DJ
1-V1	28/07/2021	Version 1	AJ	SE/JO	DJ
Annual Update 2022	October 2022	Addition of Annual Update 2022	MB/JH	DJ	DJ
Annual Update 2023	October 2023	Addition of Annual Update 2023	MB	DJ	DJ
Annual Update 2024	October 2024	Addition of Annual Update 2024	CW/MW	DJ	DJ

Table of contents

Introduction	4
Brief description of Crondall catchment	6
Problem characterisation	6
General outline plan & timescale	9
Crondall Infiltration Management Plan	12
High level approach statement	12
Investigations	13
Monitoring	13
Mitigation and Updates	13
Appendix	14
Groundwater infiltration potential analysis	14
Investigations & remedial work undertaken since 2019/20 and future plans	15
Addendum - Annual Update 2022	17
Addendum - Annual Update 2023	26
Addendum - Annual Update 2024	35

Introduction

This document sets out Thames Water's approach to the management of groundwater infiltration in sewerage systems where the influence of groundwater infiltration is viewed as significant likely leading to the sewerage system, on occasions, to become overwhelmed.

All sewerage systems combined and separate will experience some groundwater infiltration¹ and a nominal allowance in design will be made for this. However, in some catchments the impact of groundwater infiltration can be considerable leading to impacts on service during periods of high groundwater, typically during the winter.

Groundwater can enter the sewerage system through the pipes and manholes, this may occur at a defect (crack, hole, displaced joint) or on a normal joint on the sewer or in the manhole. A key point to note is that where infiltration occurs it is not necessarily an indicator that the sewer is in poor structural state simply that jointing techniques used are not completely watertight.

Ingress of groundwater is not limited to the public system that Thames Water owns and maintains but potentially the private drains, manholes and sewers that connect to our system.

Preventing and reducing the impact of groundwater infiltration is predominately achieved through the lining of sewers and

sealing of manholes. This entails the application of a synthetic liner within the pipe that creates a contiguous membrane for the length of the pipe or possibly section if the source of ingress can be narrowed down. For manholes it will typically entail sealing in a similar manner.

To line all sewers and manholes within most catchments would be prohibitively expensive to do so. Our approach to date has been centred on a 'find and fix' basis which has involved monitoring and investigating the networks in periods of high groundwater to identify sources of ingress and fix as we find them. This approach is constrained for the reason that investigations are typically limited to periods of high groundwater and when high groundwater occurs there are limited windows of time in which investigations can be successfully undertaken before flows either subside or the system is fully surcharged meaning CCTV surveys are not possible². Once sections of sewers have been lined, it will be a case of waiting until high groundwater levels reoccur to assess the effectiveness of the work undertaken, which may not be the subsequent winter but several years later.

It is recognised that the find and fix approach to date lacks a degree of certainty of resolution and for this reason Thames Water in 2020 undertook a different approach for long term management of groundwater, which is covered within this

¹ Sewers for Adoption makes an allowance for 10% of peak wastewater flow to allow for unaccounted flows such as groundwater infiltration.

²On occasions it is possible to over-pump between manholes to isolate sections of sewer to survey, this is not always feasible when the flows involved are simply too great to over-pump or the location prohibits this approach.

document under the plan section. These plans require significant investment which Thames Water will seek to secure through the price review process as service enhancement. In the meantime, we will continue to investigate sources of infiltration when it occurs and where feasible, undertake the work through our capital maintenance budgets. We refer to these as 'minor works' opportunities i.e. where we have high degree of certainty of reducing point sources of infiltration and can do so with reasonable costs and time.

The structure of this document has been created with input from the Environment Agency. Sections covered in this document include our 'Outline Plan' with timescales, Mitigation i.e. how we intend to manage the risk until our plan is fully implemented and when we will publish future updates on progress against this plan.

Brief description of Crondall catchment

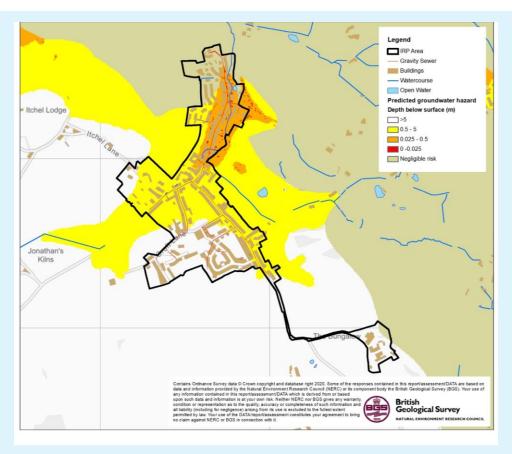


Figure 1.0 – Crondall catchment

Crondall is located in the north-east Hampshire, England, approximately 10 miles south-east of Basingstoke. Crondall serves a population equivalent³ of 1,466 with a predominantly separate sewerage network totaling some 9.2 km in length excluding private drains and sewers. The extent of the catchment is shown in Figure 1.0 above.

Problem characterisation

Groundwater has potential to enter our sewers when levels are high and a positive head above the soffit of the sewer is created. Significant groundwater ingress can impact sewer capacity and increased risk of the system becoming overwhelmed. There's a strong link between rising river levels and rising groundwater levels and the drainage issues some of our customers have experienced, including sewer flooding and restricted use of their toilets and bathrooms. The impacts of surface runoff from agricultural and built-up land has also contributed to these drainage issues.

³ Population equivalent based on unit per capita loading (PE), in waste-water treatment is the number expressing the ratio of the sum of the pollution load produced during 24 hours by industrial facilities and services to the individual pollution load in household sewage produced by one person in the same time.

Additionally, prolonged and heavy rainfall and raised groundwater levels have overwhelmed the sewer system causing operational problems at Pankridge Street sewage pumping station.

The sewerage system is identified on the public sewer records as being a partially separate foul system, rather than a combined system. In addition, we believe that significant volumes of surface water runoff from surrounding saturated fields and built-up land have entered the foul sewerage network during recent wet winters, causing the network to become overloaded and surcharge (mainly through submerged manholes).

The surveys we have carried out historically have detected that there is some evidence of unwanted flows in the foul sewer network when groundwater levels are high, and surface water inundation from highways, public spaces and properties and fluvial flooding from local watercourses. Surface water misconnections (i.e. down pipes from roofs into the sewer network) are also suspected to be a contributing factor, hence further analysis is required to determine the extent to which this has contributed to sewer flooding.

A number of our sewerage systems include for overflows, these structures are there to protect against sewer flooding as a result of rainfall or equipment failure where appropriate. Discharges from these structures should not be impacted by excessive infiltration as detailed by the EA Regulatory Position Statement on groundwater impacted sewerage systems. The use of storm sewage overflows is accepted by our regulators, subject to conditions

We believe it is likely that groundwater infiltration and surface water inundation in the Crondall catchment is the most probable cause of incidences where the sewage treatment works has not been able to cope with all incoming flows, triggering problems to homes and at the STW. The root causes of sewer surcharges require all stakeholders responsible for drainage in the catchment to resolve them together.

Our permit conditions for Crondall STW state:

"The discharge shall only occur when and only for as long as the flow passed forward is equal to or greater than the overflow setting indicated due to rainfall and/or snow melt." and "Off-line storm storage must be fully utilised before a discharge occurs. It shall only fill when the flow passed forward is equal to or greater than the overflow setting indicated due to rainfall and/or snow melt and shall be emptied and its contents returned to the continuation flow as soon as reasonably practicable."

The Flood and Water Management Act 2010 places a responsibility on Lead Local Flood Authorities (LLFAs), to manage flood risk from surface and groundwater, plus a duty on all Risk Management Authorities (RMAs), to cooperate regarding flood risk. In our role as an RMA, Thames Water will work with Hampshire Country Council as Lead Local Flood Authority, Council and Planning Authority, and the Environment Agency to ensure that a collaborative approach can be developed to address the problems.

Thames Water also has a statutory obligation to comply with environmental legislation. The Water Framework Directive establishes a strategic approach to managing the water environment, which the Environment Agency achieves through River Basin Management Plans and setting environmental objectives for groundwater and surface water. The environment is also protected from adverse effects of discharges of urban wastewater through the Urban Wastewater Treatment Directive, which requires us to improve and extend the sewerage system according to section 94 of the Water Industry Act (1991).

Anticipated unavoidable discharges

Within recent years there have been unavoidable sewage escapes in the network as a result of surcharging manholes causing pollution.

We anticipate that this situation may continue until such time we are able to implement a long-term solution.

No mitigation in the form of temporary overflows has been undertaken in the system.

General outline plan & timescale

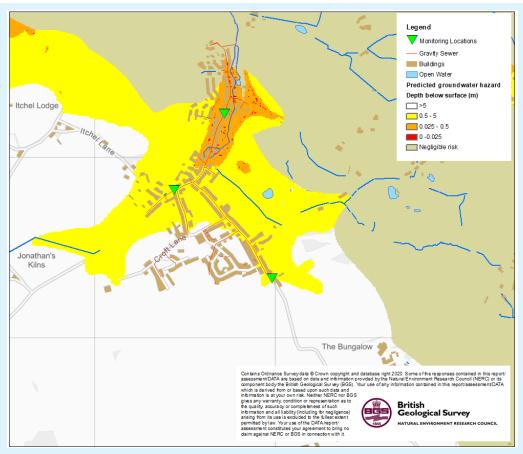


Figure 2.0 – Crondall monitoring and infiltration zones

Key to bringing the impact of groundwater infiltration under control is an enhanced monitoring regime. We have identified and have installed several telemetered depth monitor locations around the Crondall system – see Figure 2.0.

Complimenting the flow [at the treatment works] and depth measurement [in the sewer network] we will use pumping station run time data, rainfall data, river level data, and groundwater level data to create a full picture of movement and source of flows around the catchment.

Zones of Groundwater Risk

We engaged with JBA Consulting to develop plans for Crondall that identify zones of groundwater risk, see Figure 2.0. These zones are modelled areas where the groundwater has been determined to be above the sewer and hence pose a potential risk for groundwater ingress.

The sewer depth monitors referred to earlier have been sited in and around these zones to verify and calibrate the risk in each of the zones.

If following the proposal to the sealing in part or wholly⁴ of the high risk zones, should it be required, the system is found to be still experiencing excessive infiltration we would then look to potentially seal 'private' laterals and/or drains along with starting to seal the medium to low risk zones.

has been brought under control, we will continue to monitor for potential trends in infiltration suggesting the need for further work. We also anticipate monitoring the response of the catchment to surface water and where appropriate will use the monitor data to address this source of storm flow.

With this plan we remain committed to minimising the impact of groundwater on the sewerage system in Crondall.

Our general medium to long term plan is therefore to apply a hierarchy to sealing the sewer as follows:

Activity	When	Description
Model Zones	2020/21	JBA have been engaged to undertake modelling activities to identify the areas (zones) to be targeted for sealing in the 56 systems identified as being impacted by infiltration in the Thames Water region.
Install monitors	2020	Monitors have now been installed in the zones to help calibrate and validate the zones. Each year completeness / coverage monitors will be reviewed and added to / or modified as necessary.
Calibrate zones	Refined each year	Following each winter, we intend to review the data from the monitors and if necessary, redefine the zones.
Look & Lift	Each winter	The look & lift surveys have two purposes, firstly to compliment the monitoring and secondly to identify 'quick fixes' that we would address through our normal capital maintenance.
CCTV	2020-2023	Required to confirm sewer condition and provide information to assist with costing any sewer lining.

⁴ Decisions regarding the extent of sealing will be based on outcomes of works undertaken to date, result of monitoring and successful submission of our plans for investment.

Activity	When	Description
Minor works	2020-2023	As mentioned, if we detect minor works being required, we will look to resolve these as and when we find them.
PR24 / Price Review	2023/24	Ideally through monitoring and on-going investigations work towards managing the infiltration risk, in AMP7, will be successful. However, in the absence of evidence justifying the need not to undertake sealing of the high-risk zone this is to be included as part of PR24 investment plan. This work will be subject to Cost Benefit Analysis and Best Technical Knowledge Not Entailing Excessive Cost (BTKNEEC assessments).
High risk zone sealing	2025-30	Sealing of high-risk zone undertaken subject to need being demonstrated.

Crondall Infiltration Management Plan

As detailed above the impact of infiltration is experienced in the network and at the STW.

Our approach to the resolution of infiltration impacting the Crondall sewerage system is outlined below.

High level approach statement

For Crondall our approach to tackling infiltration will be undertaken as follows:

- We will investigate the network with a view to identifying sources of ingress of infiltration that are cost effective⁵ to address. To investigate the network, we have:
- Undertaken a desktop analysis to determine infiltration high to low risk zones (October 2020);
- Installed additional monitoring to back up the analysis and to aide focusing of locations for identification of infiltration (2020 to 2023). Each year we will assess the completeness of monitoring and if required add to or modify the current locations.

To investigate the network, we will:

 Undertake sample CCTV in the high to low risk zones to assess the general asset health of the sewers and manholes (ongoing). We will also review results of Winter 2019/20 and 2020/21 with historic data to build up evidence to support interventions in the network (Summer 2021).

- 2. Where interventions can be undertaken as part of normal sewer maintenance activities these will be communicated and progressed.
- 3. If significant investment is identified as being required, then this will need to be considered in terms of relative need compared to other systems being investigated for infiltration reduction. However, where viable opportunities are identified these will be included in our AMP9 (2030-35) programme of investment. Significant investment needs may need to be included in our next investment planning cycle at PR24.

⁵ Assessment of cost effectiveness is based on assessment of the ratio of the cost of a solution to the monetised benefit gained from implementing the solution i.e. reduction in flood/pollution risk and/or reduced operating costs.

Investigations

As mentioned above JBA Consulting have supported by undertaking an exercise involving assessing groundwater elevation data to determine which areas of the network are potentially below the groundwater table during high groundwater periods.

Site investigations, undertaken by Dene-Tech and our Customer Field Services (Thames Water Operations) will include 'look & lift' surveys, CCTV and where necessary dye tracing to confirm connectivity.

A table of the work undertaken is included in the appendix to this report.

Monitoring

Sewer Depth Monitors have now been installed in the catchment in 2020 (see Figure 2.0). These devices are telemetered and provide real time data on the level of flow in the sewer.

The purpose of these units is to act as alerts for high groundwater impact in the sewer, calibration of the zones of infiltration risk and to demonstrate benefit gained from work undertaken to reduce infiltration. They will also provide evidence in the future of further need to manage the impact of infiltration.

Mitigation

On occasions to avoid flooding of properties or to manage the risk of damage to the environment we may undertake tankering from (manholes) points on the network, make use of pumps to manage flows or deploy settlement tanks to part treat sewage before release to the environment.

With regard to Crondall we do not envisage needing to undertake mitigation work beyond tankering within the network.

Updates

Work on the Groundwater infiltration management plan will continue, and we will aim to provide updates annually by the end of October each year.

Appendix

Groundwater infiltration potential analysis

The sewer network classified by the groundwater infiltration risk zones. The lengths of sewers within these zones are presented in the table below.

Risk category	Description	Length (km)	Percentage
High	Predicted groundwater extreme >1m above pipe invert	1.10	28
Medium	Predicted groundwater extreme 0-1m above pipe invert	0.32	8
Low	Predicted groundwater extreme 0-1m below pipe invert	0.40	10
Very Low	Predicted groundwater extreme >1m below pipe invert	2.12	54
Total		3.946	100

In addition, the table below presents the surface water flood risk classification for manholes within the catchment.

Manholes by Surface Water Inundation Risk Category

Risk category	Description	Number	Percentage
High	Inundation risk in 3.3% AEP fluvial or pluvial event	31	27
Medium	Inundation risk in 1% AEP fluvial or pluvial event	26	22
Low	Inundation risk in 0.1% AEP fluvial or pluvial event	20	17
Very Low	All other manholes	40	34
Total		117	100

⁶ Total of sewer length is for length of mapped sewers only and will not include unmapped S105a transferred sewers in all cases.

Investigations & remedial work undertaken since 2019/20 and future plans

Our operational teams have carried out Lift and Look and CCTV surveys in the Crondall system. The results are in the process of being reviewed and prioritised and a summary of findings will be provided in the next update of this report.

Glossary of terms

AEP - Annual Exceedance Potential

AMP – Asset Management Plan

CCTV - Closed Circuit Television

EA - Environment Agency

IRP - Infiltration Reduction Plans

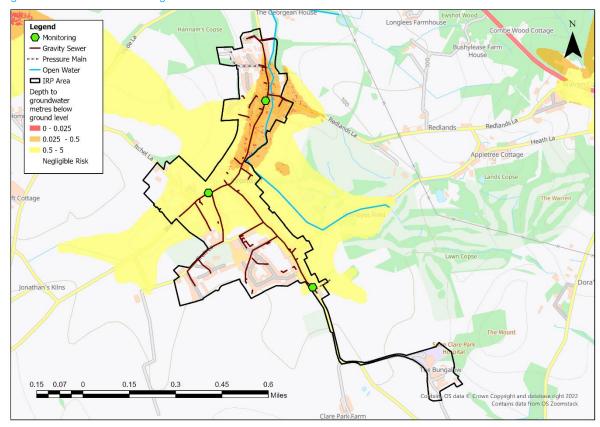
MH – Manhole

STW – Sewage Treatment Works

WINEP – Water Industry National Environment Programme

Addendum – Annual Update 2022

Table of contents


Table of Contents	
Overview	2
Hydrological Review – 2021-22	3
Network Performance	7
Investigations & Interventions	8
Summary	9

Overview

This addendum to the Crondall Groundwater Impacted System Management Plan 2021 (GISMP) provides an update on performance/work undertaken in the Hydrological Year October 2021 to September 2022. The key points covered include:

- Hydrological conditions
- How the sewerage system has performed over this period
- Mitigation / remedial measures progressed over the last year and being planned
- Summary and plan for 2022/23

Figure 1 – Crondall Monitoring Plan

Hydrological Review - 2021-2022

This section summarises the hydrological conditions within the Crondall catchment within the period under investigation and provides comparison against previous year's performance to put the annual performance into context. The hydrological review has been undertaken based on the Hydrological Year which runs October 1st to September 30th.

Catchment Rainfall

Representative Radar rainfall has been used to generate monthly data at catchment level for comparison with average data generated by local Met Office Weather Station Records. Figure 2 presents the comparison of this data for the last three hydrological years to support longer term trends within the local system.

Figure 2 – Monthly Rainfall Performance

Average Values taken from Met Office Weather Station at Odiham based on the period 1991-2020

The total rainfall for the 2021/22 hydrological year is approximately the same as the annual average total. Total rainfall values are presented in Table 3 below.

Table 3 –Total Rainfall Based on Hydrological Year

Average (mm)	2019/20 (mm)	2020/21 (mm)	2021/22 (mm)
783	1051	1212	800

Groundwater / Local River Level

The Crondall catchment is situated in the North Downs – Hampshire and Loddon water resources areas. It sits in the Seaford Chalk formation of sedimentary bedrock and the Lambeth Group of clay, silt and sand. The Seaford Chalk Formation is a designated principal aquifer within the UK.

The Environment Agency has gauging stations on local watercourses measuring stage and observation boreholes measuring groundwater levels locally to the catchment which can be used to provide indicative local groundwater performance.

From previous investigations we have identified the following sites are good indicators of groundwater levels within the catchment.

- River Hart, Crondall Pond.
- River Hart, Redlands Lane.

These sites are illustrated in the figure below, alongside the closest groundwater reference station and closest gauging station from the Water Situation Report.

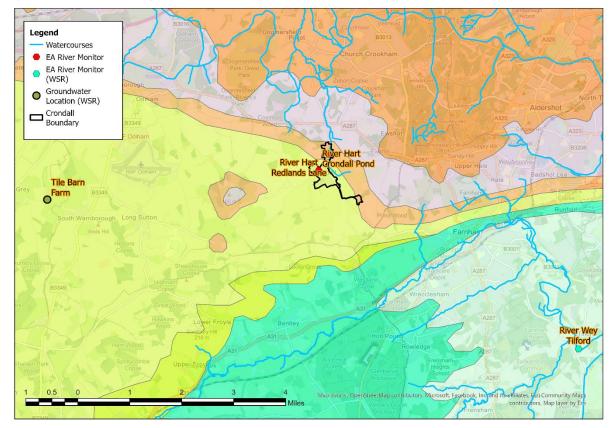


Figure 4 – Local Monitoring Stations

The following figures represent the last three hydrological years of level information at the indicator sites to build a picture of the relative conditions prevalent in the current year. It is presented against both the daily total rainfall values for the catchment and a rolling 15 day total rainfall.

Figure 5A – River Hart, Crondall Pond

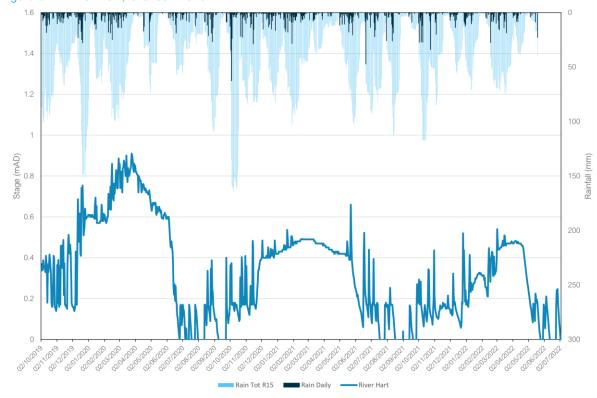
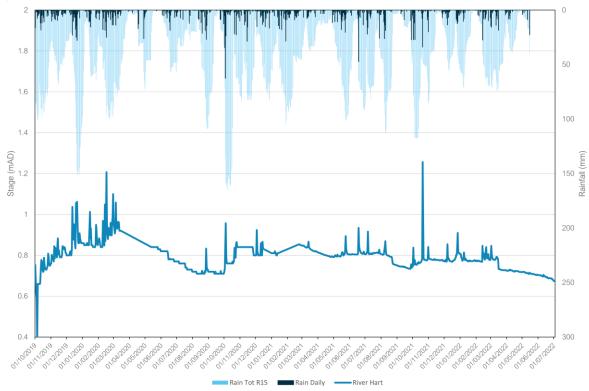
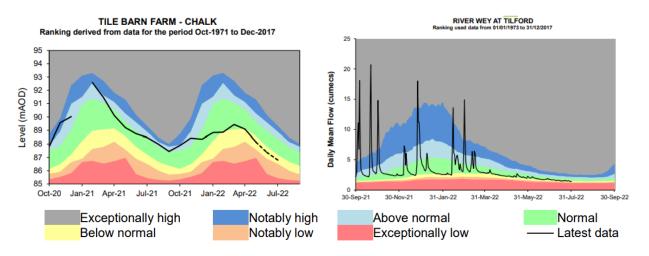




Figure 5B – River Hart, Redlands Lane

In addition to these specific stations, the wider groundwater context is illustrated in the Water Situation Report for North Downs – Hampshire. The nearest groundwater reference station is Tile Barn Farm. This site shows significantly lower overall groundwater than the previous year. This can be seen in the figure below alongside the river indicator Tilford on the River Wey. Note recent groundwater levels at Tile Barn Farm have been estimated based on nearby boreholes due to site monitoring issues.

Figure 6 – Water Situation Report

Extract from - Water Situation Report (publishing.service.gov.uk)

Network Performance

Within the Crondall catchment there is one site detailed within the Environment Agency Consents Database which has an Event Duration Monitor (EDM) fitted.

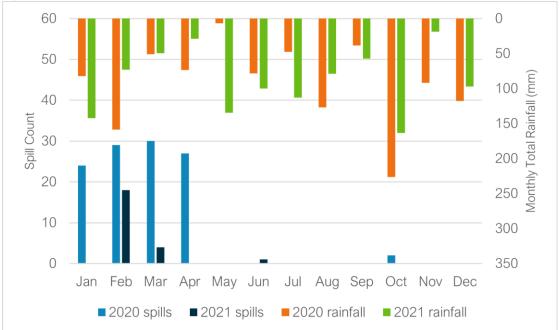

Table 7 below details the last 2 years performance of overflows within the catchment.

Table 7 – Event Duration Monitoring

		2020	2021	
Overflow	Spills	Duration	Spills	Duration
		(hours)		(hours)
Crondall STW	112	2401.08	23	276.76

A critical part of the assessment of EDM performance and its relation to groundwater inundation is to review the month-on-month spill performance, against previous years and the monthly total rainfall values to give context to the performance. Figure 8 below presents the EDM performance trend and rainfall for recent years.

The trend in spill performance across the two recorded years does show variation in spills, with an overall focus on spills during the winter months. The data suggests a wider relationship between rainfall, elevated groundwater levels and spill frequency. This is particularly evident within the first half of 2020, when a significantly higher number of EDM spills were recorded at Crondall STW compared to within the first half of 2021, when the indicator sites shown in Figure 5 suggest groundwater levels in the catchment were lower.

Investigations & Interventions

This section details the activities that have been undertaken within the catchment within the Hydrological Year 2021-22.

Monitor Installations

The sewer depth monitor (SDM) programme supports long term groundwater understanding within GISMP catchments. Currently, there are a total of 3 monitors installed within the Crondall catchment. There are currently no further monitor installs planned.

The data from these will be cross-referenced with other long-term records (where available) within the catchment.

Remediation Works Undertaken this Hydrological Year

Table 9 below provides a summary of the investigations and remediation works undertaken or planned within the Crondall catchment in the 2021-22 Hydrological Year.

Table 9 – Works Undertaken in the 2021/22 Hydrological Year

Investigation/ remediation type	Number/ length undertaken	
CCTV survey	N/A	
Look and lift survey	N/A	
Sewer lining	1.02 kilometers	
Patch lining	N/A	
Manhole sealing	23 manholes	
Manhole sealing plates	N/A	
Manhole covers and frames replaced	N/A	

Although the seasonal trends in groundwater have been low in comparison with previous years and the SDM installations are generally not showing significant groundwater presence, targeted surveys and appropriate remedial action have been undertaken where groundwater levels have allowed.

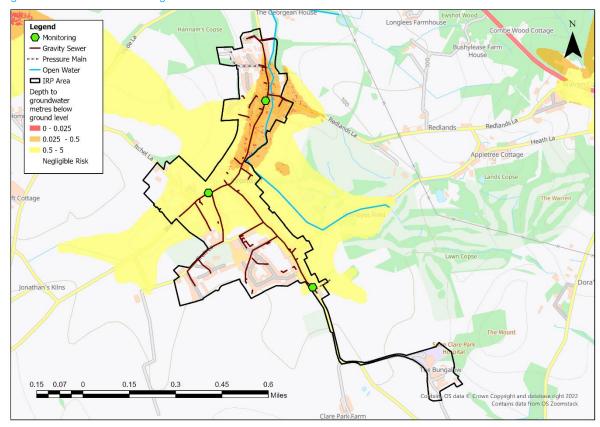
Summary

Rainfall in the Crondall catchment over the 2021/22 hydrological year has been around average, with groundwater levels in the aquifer beneath Crondall not reaching the levels seen in previous years with above average rainfall, which triggered groundwater ingress into the sewerage network and elevated flow/depth readings at monitoring sites.

Lift and look and CCTV surveys will be undertaken in remaining wet winter periods if conditions allow and subject to funding and available capacity. The aim of this is to find further priority locations for remediation and investigating/justifying the need for future larger scale lining as part of our Price Review (PR) process if required.

Addendum - Annual Update 2023

Table of contents


Overview	2
Hydrological Review – 2022-23	3
Network Performance	7
Investigations & Interventions	8
Summary	9

Overview

This addendum to the Crondall Groundwater Impacted System Management Plan 2021 (GISMP) provides an update on performance/work undertaken in the Hydrological Year October 2022 to September 2023. The key points covered include:

- Hydrological conditions
- Performance of the sewerage system
- Mitigation / remedial measures progressed over the last year and being planned
- Summary and plan for 2023/24

Figure 1 – Crondall Monitoring Plan

Hydrological Review – 2022-2023

This section summarises the hydrological conditions within the Crondall catchment within the period under investigation and provides comparison against previous year's performance to put the annual performance into context. The hydrological review has been undertaken based on the Hydrological Year which runs October 1st to September 30th.

Catchment Rainfall

Representative Radar rainfall has been used to generate monthly data at catchment level for comparison with average data generated by local Met Office Weather Station Records. Figure 2 presents the comparison of this data for the last four hydrological years to support longer term trends within the local system.

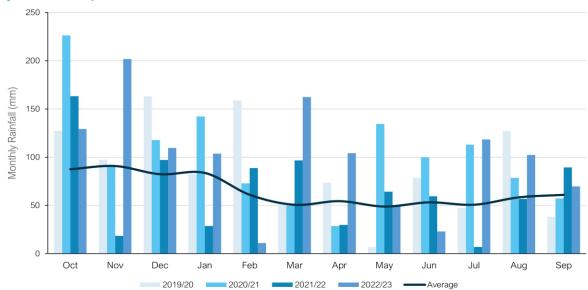


Figure 2 – Monthly Rainfall Performance

Average Values taken from Met Office Weather Station at Odiham based on the period 1991-2020

The total rainfall for the 2022/23 hydrological year is approximately 51% above the annual average total. Total rainfall values are presented in Table 3 below.

Table 3 –Total Rainfall Based on Hydrological Year

Average (mm)	2019/20 (mm)	2020/21 (mm)	2021/22 (mm)	2022/23 (mm)
783	1051	1212	800	1185

Groundwater / Local River Level

The Crondall catchment is situated in the North Downs – Hampshire and Loddon water resources areas. It sits in the Seaford Chalk formation of sedimentary bedrock and the Lambeth Group of clay, silt and sand. The Seaford Chalk Formation is a designated principal aquifer within the UK.

The Environment Agency has gauging stations on local watercourses measuring stage and observation boreholes (OBH) measuring groundwater levels locally to the catchment which can be used to provide indicative local groundwater performance.

From previous investigations we have identified the following sites are good indicators of groundwater levels within the catchment.

- River Hart, Crondall Pond.
- River Hart, Redlands Lane.

These sites are illustrated in the figure below, alongside the closest groundwater reference station and closest gauging station from the Water Situation Report.

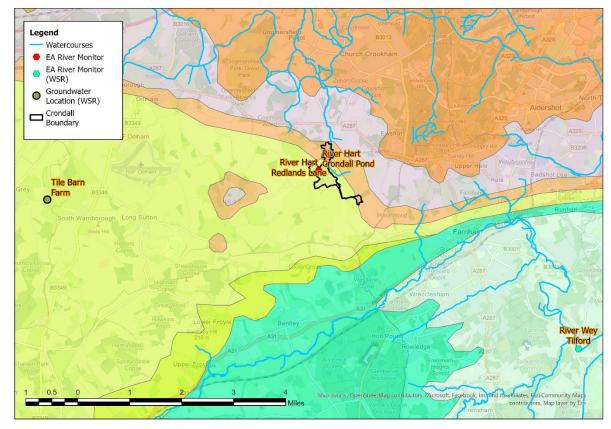


Figure 4 – Local Monitoring Stations

The following figures represent the last three hydrological years of level information at the indicator sites to build a picture of the relative conditions prevalent in the current year. It is presented against both the daily total rainfall values for the catchment and a rolling 15 day total rainfall.

Figure 5A – River Hart, Crondall Pond

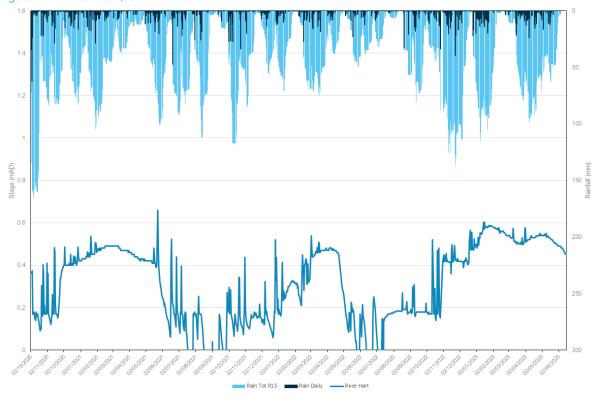
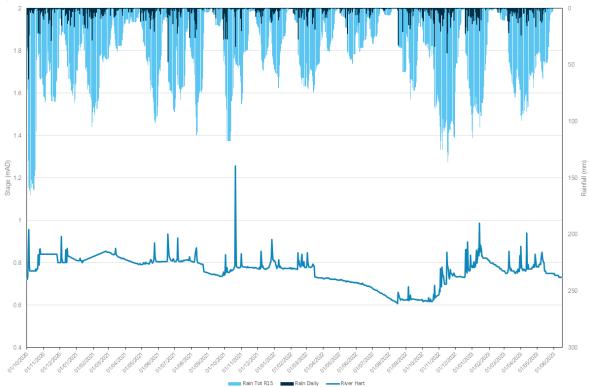



Figure 5B – River Hart, Redlands Lane

In addition to these specific stations, the wider groundwater context is illustrated in the Water Situation Report for North Downs – Hampshire. The nearest groundwater reference station is Tile Barn Farm. This site shows groundwater levels to be at normal or below normal levels for the majority of 2022, rising to notably high at the end of 2022 and into 2023, where levels remain higher than the equivalent period in 2022. This is shown in the figure below alongside the river indicator Tilford on the River Wey. Note recent groundwater levels at Tile Barn Farm have been estimated based on nearby boreholes due to site monitoring issues.

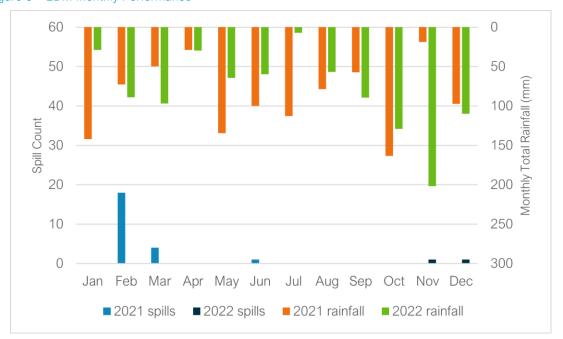
Figure 6 – Water Situation Report

Extract from - Water Situation Report (publishing.service.gov.uk)

Network Performance

Within the Crondall catchment there is one site detailed within the Environment Agency Consents Database which has an Event Duration Monitor (EDM) fitted.

Table 7 below details the last 2 years performance of overflows within the catchment.


Table 7 – Event Duration Monitoring

	2021		2022	
Overflow	Spills	Duration	Spills	Duration
		(hours)		(hours)
Crondall STW	23	276.76	2	1.46

Note, a spill frequency of two is stated for 2022 which is higher than the value of one contained in the Annual Return. The spill count has been revised/ revalidated and the value of two is the post validation value.

A critical part of the assessment of EDM performance and its relation to groundwater infiltration is to review the month-on-month spill performance, against previous years and the monthly total rainfall values to give context to the performance. Figure 8 below presents the EDM performance trend and rainfall for recent years.

Figure 8 – EDM Monthly Performance

The trend in spill performance across the two recorded years does show variation in spills, with an overall focus on spills during the winter months. The data suggests a wider relationship between rainfall, elevated groundwater levels and spill frequency. Despite similar rainfall totals, significantly more spills were recorded at Crondall STW in February 2021 compared to February 2022. The River Hart at Crondall indicator site shown in Figure 5 suggests groundwater levels in the catchment were higher in February 2021 compared to the equivalent period in February 2022, with Figure 6 suggesting groundwater levels in the catchment were just above below normal in the February 2022 period.

Investigations & Interventions

This section details the activities that have been undertaken within the catchment within the Hydrological Year 2022-23.

Monitor Installations

The sewer depth monitor (SDM) programme supports long term groundwater understanding within GISMP catchments. Currently, there are a total of three depth monitors installed within the Crondall catchment. There are currently no further depth monitor installs planned.

The data from these will be cross-referenced with other long-term records (where available) within the catchment.

Four flow monitors are also to be installed in the catchment to guide further lining works (locations to be confirmed), if CCTV survey footage shows groundwater infiltration into the network, see 'Remediation Works Undertaken this Hydrological Year'.

Remediation Works Undertaken this Hydrological Year

Table 9 below provides a summary of the investigations and remediation works undertaken or planned within the Crondall catchment in the 2022-23 Hydrological Year, as well as works undertaken in the 2021-22 Hydrological Year.

Table 9 - Works Undertaken in the 2022/23 Hydrological Year & in the 2021/22 Hydrological Year

Investigation/ remediation	Number/ length undertaken	Number/ length undertaken
type	21/22	22/23
CCTV survey	N/A	2.656 kilometres*
Look and lift survey	N/A	N/A
Sewer lining	1.02 kilometres	N/A
Patch lining	N/A	N/A
Manhole sealing	23 manholes	N/A
Manhole sealing plates	N/A	N/A
Manhole covers and frames replaced	N/A	N/A

^{*}Footage is still being reviewed at the time of writing. Further lining works to be planned, in addition to the 1.02 km undertaken last hydrological year if footage shows groundwater infiltration into the network. Four flow monitors, in addition to the three existing depth monitors, to subsequently be installed to guide further lining works.

An upgrade is also planned for Crondall STW. This will improve its ability to treat the volumes of incoming sewage, reducing the need for untreated discharges to the environment, and provide a higher quality of treated effluent going to the river. The scheme is due to be completed in 2024.

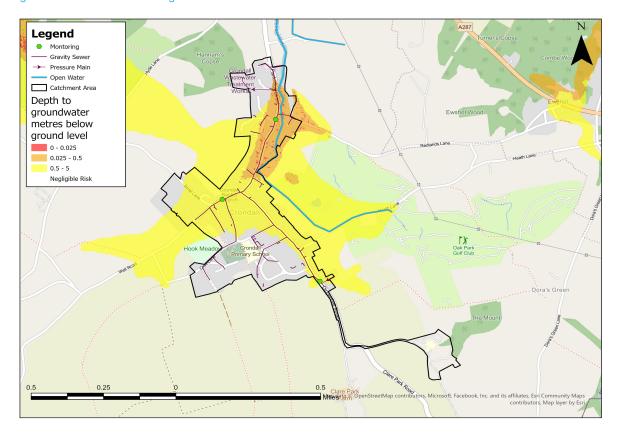
Summary

Indicator site data suggests groundwater levels in the Crondall catchment were generally low in 2022, at below normal levels or just above this, with trends in the EDM data indicative of the role of groundwater infiltration on spills in the catchment. This hydrological year (October 2022-September 2023), groundwater levels have generally been higher than the previous hydrological year, and EDM data for 2023 will be analysed once available to continue to examine the relationship between groundwater levels and overflow spills.

Lift and look and CCTV surveys will be undertaken in remaining wet winter periods if conditions allow and subject to funding and available capacity. The aim of this is to find further priority locations for remediation and investigating/justifying the need for future larger scale lining as part of our Price Review (PR) process if required.

Addendum - Annual Update 2024

Table of contents


Overview	1
Hydrological Review – 2023-24	2
Network Performance	6
Investigations & Interventions	8
Summary	9

Overview

This addendum to the Crondall Groundwater Impacted System Management Plan 2021 (GISMP) provides an update on performance/work undertaken in the Hydrological Year October 2023 to September 2024. The key points covered include:

- Hydrological conditions
- Performance of the sewerage system
- Mitigation / remedial measures progressed over the last year and being planned
- Summary and plan for 2024/25

Figure 1 – Crondall Monitoring Plan

Hydrological Review - 2023-2024

This section summarises the hydrological conditions within the Crondall catchment within the period under investigation and provides comparison against previous year's performance to put the annual performance into context. The hydrological review has been undertaken based on the Hydrological Year which runs October 1st to September 30th.

Catchment Rainfall

Representative Radar rainfall has been used to generate monthly data at catchment level for comparison with average data generated by local Met Office Weather Station Records. Figure 2 presents the comparison of this data for the last five hydrological years to support longer term trends within the local system.

Mar

Apr

2022/23

May

Jun

2023/24

Jul

Aug

Figure 2 – Monthly Rainfall Data

Oct

Nov

Dec

2019/20

Jan

2020/21

Average Values taken from Met Office Weather Station at Odiham based on the period 1991-2020

Feb

2021/22

The total rainfall for the 2023/24 hydrological year is approximately 78% above the annual average total. Total rainfall values are presented in Table 3 below.

Table 3 - Total Rainfall Based on Hydrological Year

Average (mm)	2019/20 (mm)	2020/21 (mm)	2021/22 (mm)	2022/23 (mm)	2023/24 (mm)
783	1051	1212	800	1185	1396

Groundwater / Local River Level

The Crondall catchment is situated in the North Downs – Hampshire and Loddon water resources areas. It sits in the Seaford Chalk formation of sedimentary bedrock and the Lambeth Group of clay, silt and sand. The Seaford Chalk Formation is a designated principal aquifer within the UK.

The Environment Agency has gauging stations on local watercourses measuring stage and observation boreholes (OBH) measuring groundwater levels locally to the catchment which can be used to provide indicative local groundwater performance.

From previous investigations we have identified the following sites are good indicators of groundwater levels within the catchment.

- River Hart, Crondall Pond.
- River Hart, Redlands Lane.

These sites are illustrated in Figure 4, alongside the closest groundwater reference station and closest gauging station from the Water Situation Report.

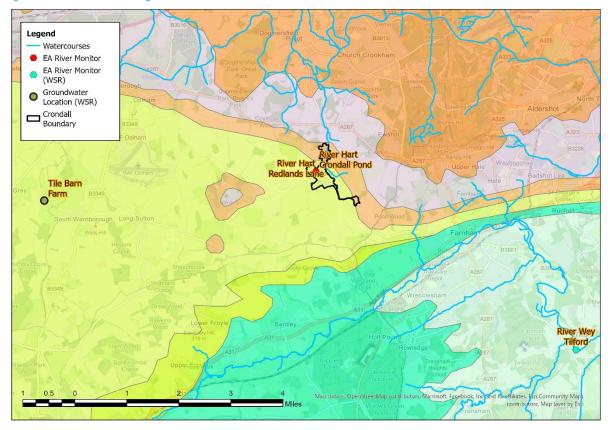


Figure 4 – Local Monitoring Stations

Figures 5A-5B represent the last three hydrological years of level information at the indicator sites to build a picture of the relative conditions prevalent in the current year. It is presented against both the daily total rainfall values for the catchment and a rolling 15 day total rainfall. Note that stage data for the River Hart at Redlands Lane site is only available to February 2024.

Figure 5A – River Hart, Crondall Pond

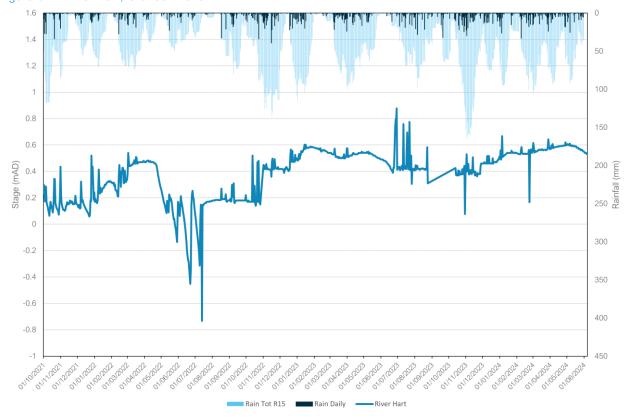
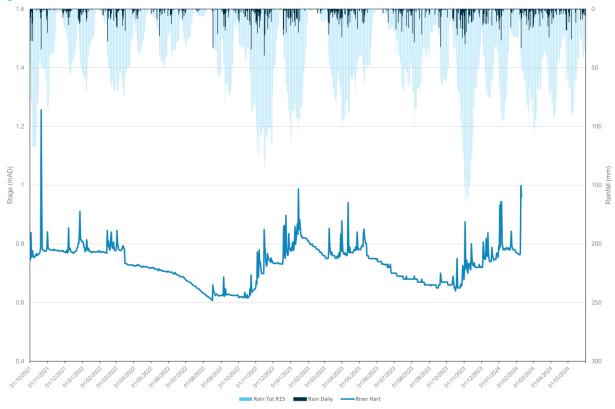
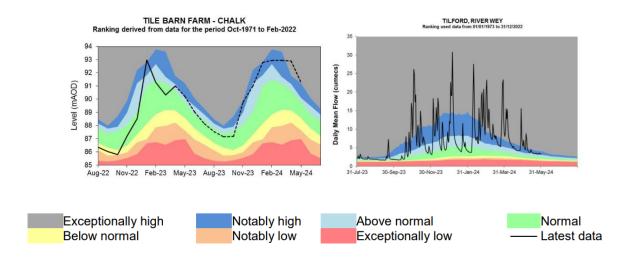




Figure 5B – River Hart, Redlands Lane

In addition to these specific stations, the wider groundwater context is illustrated in the Water Situation Report for North Downs – Hampshire. The nearest groundwater reference station is Tile Barn Farm. This site shows groundwater levels in 2024 reach similar levels to those observed in 2023. However, groundwater levels remained at notably high levels for a more prolonged period and were observed at exceptionally high levels in spring 2024. This is shown in Figure 6 alongside the river indicator Tilford on the River Wey. Note recent groundwater levels at Tile Barn Farm have been estimated based on nearby boreholes due to site monitoring issues.

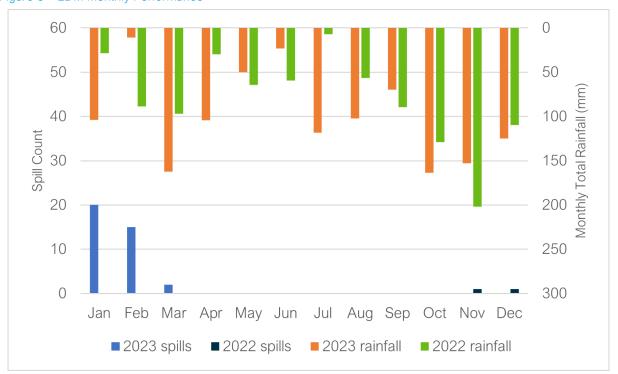
Figure 6 – Water Situation Report

Extract from - Water Situation Report (publishing.service.gov.uk)

Network Performance

Within the Crondall catchment there is one site detailed within the Environment Agency Consents Database which has an Event Duration Monitor (EDM) fitted.

Table 7 below details the last 2 years performance of overflows within the catchment.


Table 7 – Event Duration Monitoring

	2022		2023	
Overflow	Spills	Duration	Spills	Duration
		(hours)		(hours)
Crondall STW	2	1.46	37	762

Note, a spill frequency of two is stated for 2022 which is higher than the value of one contained in the Annual Return. The spill count was revised/ revalidated and the value of two is the post validation value.

A critical part of the assessment of EDM performance and its relation to groundwater infiltration is to review the month-on-month spill performance, against previous years and the monthly total rainfall values to give context to the performance. Figure 8 below presents the EDM performance trend and rainfall for recent years.

Figure 8 – EDM Monthly Performance

The data suggests a wider relationship between rainfall, elevated groundwater levels and spill frequency. The majority of spills recorded at Crondall STW occurred January – March 2023, when the indicator site data shown in Figures 5 and 6 suggests that groundwater levels in the catchment became elevated, reaching notably/ exceptionally high levels. In comparison, no spills were recorded at Crondall STW January – March 2022, with the indicator site data shown in Figure 5 suggesting groundwater levels in the catchment were generally lower. Similarly, an absence of spills across the summer months, despite some relatively high rainfall totals, is also

indicative of the role of groundwater infiltration on spills in the catchment during wetter winter periods.

Investigations & Interventions

This section details the activities that have been undertaken within the catchment within the Hydrological Year 2023-24.

Monitor Installations

The sewer depth monitor (SDM) programme supports long term groundwater understanding within GISMP catchments. Currently, there are a total of three depth monitors installed within the Crondall catchment. There are currently no further depth monitor installs planned.

The data from these will be cross-referenced with other long-term records (where available) within the catchment.

Remediation Works Undertaken this Hydrological Year

Table 9 below provides a summary of the investigations and remediation works undertaken or planned within the Crondall catchment in the 2023-24 Hydrological Year, as well as works undertaken in the previous two hydrological years.

Table 9 – Works Undertaken in the 2023/24 Hydrological Year, 2022/23 Hydrological Year & 2021/22 Hydrological Year

Investigation/	Number/ length	Number/ length	Number/ length
remediation type	undertaken 21/22	undertaken 22/23	undertaken 23/24
CCTV survey	N/A	2.656 kilometres*.	N/A
		Additional 174 metres	
		to assess sewer	
		structural conditions.	
Look and lift survey	N/A	N/A	N/A
Sewer lining	1.02 kilometres	N/A	N/A
Patch lining	N/A	N/A	N/A
Manhole sealing	23 manholes	N/A	N/A
Manhole sealing plates	N/A	N/A	N/A
Manhole covers and	N/A	N/A	N/A
frames replaced			

^{*}Footage is still being reviewed at the time of writing. Further lining works to be planned, in addition to the 1.02 km undertaken last hydrological year, if footage shows groundwater infiltration into the network. Four flow monitors, in addition to the three existing depth monitors, to subsequently be installed to guide further lining works.

An upgrade is planned for Crondall STW. This will improve its ability to treat the volumes of incoming sewage. The scheme is due to be completed in 2025. An opportunity to optimise existing assets and improve effluent quality has also been identified. This work is expected to be completed in 2024 alongside agreement to a new permit. Note, delivery dates are being managed at a programme level, delivery dates stated are based upon current views and are subject to change.

In addition to investigations previously detailed in these Addendum Reports, 174 metres of CCTV survey was undertaken in the catchment over the summer/ autumn 2023 period. The purpose of these surveys was to assess the structural condition of sewers predicted to be at high risk of groundwater infiltration, rather than to identify locations of groundwater infiltration into the network. A total of 15% of the high-risk network was surveyed. All surveyed network was identified as being in a good structural condition.

The catchment is expected to meet all government targets for storm overflows by 2030.

Summary

Indicator site data suggests groundwater levels in the Crondall catchment have reached notably/ exceptionally high levels in the 2023/24 Hydrological Year, for prolonged periods in winter and early spring. January and February of 2023 saw increased groundwater levels compared to the previous year, coinciding with an increased spill frequency at Crondall STW. EDM data for 2024 will be analysed once available to assess the impact of significantly increased groundwater levels in the current hydrological year.

Lift and look and CCTV surveys will be undertaken in remaining wet winter periods if conditions allow and subject to funding and available capacity. The aim of this is to find further priority locations for remediation and investigating/justifying the need for future larger scale lining as part of our Price Review (PR) process if required.

