2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Appendix D. Water Situation Reporting

Contents

Appendi	x D. Water Situation Reporting	1
D1.	Water Situation Reports Produced by Thames Water	2
D1.1	Rainfall Data	2
D1.2	Soil Moisture Deficit (SMD)	4
D1.3	River Flows Selection of Data and Listing of Available Data	6
D1.4	Groundwater Levels – Thames Valley and London	10
D1.5	Reservoir Storage	12
D1.6	Works Outputs (Water in to Supply) for whole Company, London and Thames Valley	13
Figure 1	D1 Monthly Deinfoll 2019 2020	2

Figure 1: D I Monthly Raintall 2018 - 2020	
Figure 2: D2 Thames Region (12 Station) Cumulative Rainfall	3
Figure 3: D3 Thames Region Effective Rainfall (percolation)	4
Figure 4: D4 Thames Region Soil Moisture Deficits (SMDs) for 2010 to 2016	5
Figure 5: Soil Moisture Deficits as at 31 December 2020	6
Figure 6 D 6 Flows over Teddington Weir, Gauged and Naturalised Flow	7
Figure 7 D7 Flows in the Darent at Hawley, Gauged Flow	8
Figure 8 D8 Gauged and Natralised Flows in the River Thames at Farmoor	9
Figure 9 D9 Gauged and predicted flows in the River Kennet at Theale	10
Figure 10 D10 Ground water levels in Jackaments Bottom	11
Figure 11 D11 Ground water levels in Stonor Park	12

Table 1 D2 River Gauging Sites	6
Table 2 D3 Abstraction licence flow constraints and risk level for January 2021	10
Table 3 D4 Regional observation boreholes (OBHs) and associated aquifer unit	10
Table 4 D5 Reservoir Storage Values - 31 January 2021	12

APPENDIX D

WATER SITUATION PLANNING

D1. Water SITUATION Reports Produced by Thames Water

We produce monthly Water Situation Report (WSR) which use data provided by the Environment Agency to produce a selection of hydrographs and tables. The frequency of reporting is increased during a drought to bi-weekly or weekly depending on the severity of the drought situation. We collate and analyse the hydrological data sent by the Environment Agency (see Appendix J for more detail) and combines this with water supply information it gathers to produce an up-to-date assessment of the water resources situation across our water supply area. The WSR includes the following information:

D1.1 Rainfall Data

Figures D1, D2 and D3 provide examples of how the rainfall data is presented.

Figure 1: D1 Monthly Rainfall 2018 - 2020 NB the average is based on 126 year record

APPENDIX D

Cumulative Rainfall Oct 2019 to Sep 2020 (Water Year)

Figure 2: D2 Thames Region (12 Station) Cumulative Rainfall

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Figure 3: D3 Thames Region Effective Rainfall (percolation)

D1.2 Soil Moisture Deficit (SMD)

Rainfall effectiveness is governed by the SMD level, consequently an ongoing appreciation of SMD is important, particularly at the start of the winter recharge period (September though November) when the high SMD levels that developed over the summer are steadily reduced. Figure D4 illustrates the annual cycle of SMD level from January 2010 to August 2016. Figure D5 shows an example of site-specific SMD measurements across the Thames catchment for August 2016.

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Figure 4: D4 Thames Region Soil Moisture Deficits (SMDs) for 2010 to 2016

Soil Moisture Deficits as at 31 December 2020

APPENDIX D

Figure 5: Soil Moisture Deficits as at 31 December 2020

D1.3 River Flows Selection of Data and Listing of Available Data

The Environment Agency provide river flow data at a series of gauging stations, the most important of which are associated with constraints on river or groundwater abstraction licences. Table D2 gives the list of key gauging sites. Examples of river hydrographs are given in Figures D6 to D9.

Table 1 D2 River Gauging Sites

River	Gauging Site		
Lower Thames	Teddington Weir		
Middle Thames	Reading		
Upper Thames	Farmoor		
Lee	Fieldes Weir		
Cray	Crayford		
Darent	Hawley		
Law Brook	Albury		
Tillingbourne	Shalford		
Wey	Tilford		
Kennet	Knighton		
Kennet	Theale		
Pang	Pangbourne		
Churn	Cirencester		
Coln	Bibury		
Cherwell	Banbury		

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Figure 6 D 6 Flows over Teddington Weir, Gauged and Naturalised Flow

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Figure 7 D7 Flows in the Darent at Hawley, Gauged Flow

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Figure 8 D8 Gauged and Natralised Flows in the River Thames at Farmoor

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Figure 9 D9 Gauged and predicted flows in the River Kennet at Theale

The Environment Agency provides regular updates of river flows and risk of reaching abstraction licence flow constraints. Table D3 provides an example of the output for August 2016.

Table 2 D3 Abstraction licence flow constraints and risk level for January 2021

Flow Constraints:

Piwor	Abstraction Location	Constraint Value Li MI/d Co	Licence	Licence Date	Current Value (EA)		Risk*		
River			Condition	Date	MI/d		High	Med.	Low
Cherwell @ Banbury	Banbury (Low Flow Scheme)	10.0	6 Hr	31-Dec-20	248.0				~
Churn @ Cirencester	Baunton	32.0	5 Day Mean	28/12-31/12/2020	305.9				~
Coln @ Bibury	Meysey Hampton	68.0	5 Day Mean	28/12-31/12/2020	456.2				\checkmark
Cray @ Crayford	Bexley	24.0	5 Day Cons Below	31-Dec-20	90.0				~
Kennet @ Knighton	Axford	100.0	5 Days Cons Below	31-Dec-20	223.5				~
Law Brook @ Albury	Albury BHs	2.27	1 Day	31-Dec-20	9.7				\checkmark
Pang @ Pangbourne	Pangbourne	18.0	5 Day Cons Below	31-Dec-20	116.6				\checkmark
Sor Brook @ Bodicote	Bodicote - NOT USED	14.0	1 Day	31-Dec-20	67.8				\checkmark
Thames @ Farmoor (Natural)	Farmoor	136.4	1 Day	31-Dec-20	6048.0				\checkmark
Thames @ Reading	Gatehampton	400.0	5 Day Cons Below	31-Dec-20	3801.6				\checkmark
*Risk indicates the chance of the river flow falling below the licence flow constraint at the gauging station									

D1.4 Groundwater Levels – Thames Valley and London

The Environment Agency monitors a national network of regional observation boreholes (OBHs). Table D4 shows the OBHs relevant to the Thames catchment for which groundwater level data is provided on a regular basis. Examples of well hydrographs are given in Figures D10 and D11.

Table 3 D4 Regional observation boreholes (OBHs) and associated aquifer unit

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Regional OBH	Aquifer		
Jackaments Bottom	Cotswolds Inferior Oolite Limestone		
Rockley	Marlborough Downs Chalk		
Gibbet Cottages	Berkshire Downs Chalk		
Stonor Manor	Chilterns Chalk		
Ashley Green	Chilterns Chalk		
Lilley Bottom	East Chilterns Chalk		
Therfield Rectory	Lee Valley Chalk		
Tile Barn Farm	North Downs Chalk		
Well House Inn (replaced By Chipsted)	North Downs Chalk		
Rose and Crown	Croydon Chalk		
Riverhead	Darent Lower Greensand		

COTSWOLDS - JACKAMENTS BOTTOM - INFERIOR OOLITE Ranking derived from data for the period Jan 1974 to Dec 2017

Figure 10 D10 Ground water levels in Jackaments Bottom

2022 FINAL DROUGHT PLAN

APPENDIX D

WATER SITUATION PLANNING

Figure 11 D11 Ground water levels in Stonor Park

D1.5 Reservoir Storage

We measure our reservoir storage on a daily basis. The table below shows the actual levels for 2 August 2016.

Table 4 D5 Reservoir Storage Values - 31 January 2021

	TOTAL IN	USABLE	% FULL	CHANGE FROM	% FULL
	STORAGE (MI)	CAPACITY (MI)	January 31, 2021	December 31, 2020	January 31, 2020
WEST LONDON	143645	165090	87%	1%	91%
LEE VALLEY	30288	37739	80%	3%	93%
TOTAL LONDON	173933	202828	86%	2%	<mark>91%</mark>
FARMOOR	12244	13822	89%	10%	97%

APPENDIX D

WATER SITUATION PLANNING

D1.6 Works Outputs (Water in to Supply) for whole Company, London and Thames Valley

The Distribution Input (i.e. the water into supply) is monitored daily and reported each week for the Company as a whole and for London and Thames Valley separately. This is compared to the previous year and the average over the last 5 years. This information is used to track how demand changes through the course of a drought event